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Abstract

Taking advantage of the vastly different time scales of the
problem, a simple analytical model of the relaxation oscil-
lations has been developed. First a continuous approxima-
tion of the impulsive discrete forces is made. Then only
the synchronous components of the force are retained to
describe the slowly varying amplitude and frequency of the
relaxation oscillation. A two particle version of this model
reproduces the main characteristics of the system. A more
complete paper is in preparation [1].

1 ANALYTICAL MODEL

1.1 Continuous Approximation

A particle in a storage ring generates a electromagnetic
¿eld, a wake¿eld, that acts back on itself. The wake¿eld
of a cavity can be represented as the impulse response of
a narrow-band resonator of resistance,UV , frequency,$U,
and damping factor�U.
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The wake seen by any particle is the sum of all wakes gen-
erated by it and all other particles in all previous turns. For
a single bunch, the decelerating wake potential seen at time,
w, is then
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The arrival times of the source particle generating the
wake¿eld, x, and the particle experiencing the wake¿eld,
w, are expressed byw @ qW3.�q andx @ nW3.�n, where
�q, �n � W3. Representing$U @ s$3.$} as an integral
multiple and a fractional part of the revolution harmonic,
the sum becomes
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When the bunch hasQ particles of charge,h, giving a ma-
chine current,L, the electrical potentialY +w, generated by
the wake is
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1.2 Evaluation of the Integral

The continuous approximation of the synchrotron motion is
that of common pendulum motion, for which oscillations as
large as �@5 are still very sinusoidal. Therefore � +w, and
� +x, can be represented as

� w @ e� w frv+$vww. !w,> �x @ e�x frv+$vxw. !x,

with e� w, e�x, $vw, $vx, !w, and !x all slowly varying com-
pared to the synchrotron period. The exponential damp-
ing in the integral means that only important contributions
come from times no further back than a few damping times,
during which the these quantities can be treated as constant.
With the notationuw @ e� w$U, ux @ f�x$U, the integral in
the driving term can be expressed as the real part of
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1.3 Application of KBM Method

The averaging method of Krylov, Bogoliubov, and
Mitropolskii [2] [3] is well suited to such an oscillatory
problem with slowly varying parameters [4]. To solve a
driven harmonic oscillator,�{.$5vr{ @ i{ +{> b{,, new vari-
ables,+ u +w, > ! +w,,, are de¿ned in terms of+{ +w, > b{ +w,,
by

{ @ u frv +$vrw. !, > b{ @ �$v3 u vlq +$vrw. !,

The averaged evolution equations of the oscillation ampli-
tude and phase become
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IV4 and IF4 are the Fourier coef¿cients of the fre-
quency$vx in the wake¿eld generated by the particle at
+ux> !x,.on the particle at+uw> !w,
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where D @
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v3
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This paper discusses only the case when $U @ $UI . Ex-
tensions to other values of$U are straightforward.

The wake¿eld is not the only perturbation to the har-
monic equation. A radiation damping term,��udg=�uw,
contributes to theb�uw equation. The amplitude dependent
decrease in pendulum frequency can be approximated by a
term quadratic in�uw [3]. The KBM method is applied by
treating the three terms as independent contributions to the
equations of motion of�u and�!, giving the¿nal, averaged
equations of motion for a test particle at+uw> !w, due to a
macroparticle at+ux> !x,
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2 ANALYSIS OF RELAXATION
OSCILLATIONS:

2.1 Properties of Wake¿eld Terms

The convenient reference frame for these equations is one
rotating in phase with�x, and in which�x moves radially
along the! @ 3 axis. The angular position of� w is the
difference in phase,�!, between it and the source. As� w
rotates in this frame, the forces from�x change charac-
ter, from damping to anti-damping, and from frequency in-
crease to frequency decrease. For narrow band resonators
tuned with$} @ $vx, the line of maximal growth and zero
frequency shift both lie close to�! @ 3.

2.2 Linear regime

For the case of a single macroparticle model,uw @ ux, and
�! @ 3. In most cases, thep @ 3 andp @ 4 terms
of the series give a good approximation to the total force.
Using the narrowband resonator impedance approximation,
for smallu, after de¿ning]s

n @ ]+s$3.n$},, one recov-
ers the formulae for growth and frequency shifts given in
references[5][6].
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2.3 Growth as a Macroparticle

Equations 1 and 2 give the driving force acting on a test
particle (uw,�!) produced by the main body+ux>�! @ 3,.
In expansions around the main body,�u is de¿ned as
�u / uw � ux=
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Figure 1: b�u, b�! terms in+uw> !w, plane. (a)IV4� (b)IF4� (c)
IV4 and�udg�u� (d) bIF4 and pendulum shift

Figure 1 shows the effect of the growth and frequency
shift due to the macroparticle wake in the rotating frame:

� particles ahead of (behind) the main body
+ux @ 3>�! A 3 +�! ? 3,, experience a lesser
(greater) b�! than the main body and will fall back
(catch up) to it.(¿gure 1(b))

� particles at+�u ? 3 +�u A 3, >�! @ 3, feel more
(less) growth than the main particle and will grow
(fall) toward it (¿gure 1(a),(c))

This justi¿es why the bunch keeps its cohesion during its
growth [7]� the main body is an attractor for all the parti-
cles of the bunch. As the oscillation increases to moderate
amplitudes, two nonlinear effects become important: the
Bessel terms decrease the growth rate� the pendulum fre-
quency shift starts to dominate the frequency term.

2.4 Filamentation

The pendulum frequency shift now causes a strong enough
asymmetry in�u that the test particles start to escape from
the front of the bunch.

� Particles with�u @ 3 experience the same growth as
the main body, and will tend to group back towards it
as during the growth.

� Particles with (�u A 3>�! @ 3, slow down more
than the main body and acquire a�! ? 3. This leads
them to an area of smaller radial growth, decreasing
�u, and hence increasing frequency. This sequence
leads back to the main body.

� But particles with (�u ? 3>�! @ 3, speed up more
than the main body and acquire a�! A 3. Once
they cross the angle of maximal growth, the particles
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at positive �! experience a smaller driving force and
move to even more negative �u. The particles escape
from the front of the bunch.

The experimental data shows the decrease in strength of
the growth term, only part of which comes from the weaker
Bessel terms. The bunch saturates at lower amplitudes than
this effect predicts. Streak camera images reveal the loss of
particles [7]. The relaxation of the oscillation comes from
the loss of growth due to the leakage of particles away from
the main body and the formation of a second attractor close
to the center of phase space.

2.5 Damping of system

As the escaping particles spiral away from the main body
towards the center, they alternately experience positive and
negative forces from the main body. Over a rotation of
�! @ 5�, the net growth due to the main body nearly van-
ishes, so the particles damp at about the radiation damping
rate. The only growth they see is due to other particles
synchronous to them.

The¿nite main body amplitude,�x 9@ 3, implies equa-
tions 1 and 2 are non-zero at the origin� therefore all values
of b�! exist near there (equation 4). On the locus of points
in phase with the main body, the particles will again feel
the main body’s wake. On the locus exists a point at which
the radial growth vanishes� very close by is an attractor for
particles leaving the main body. To experience no growth
from the wake,�! q �@5 when$} @ $vr (¿gure 1). As
charge accumulates at this point, its self-generated wake
increases in strength and�! of the stable point increases
to acquire damping from the main body. The second at-
tractor is actually not¿xed, but grows slowly in amplitude,
attracting more and more particles until it becomes the new
main body in the next relaxation cycle.

2.6 Visualization of second attractor
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Figure 2: b�u, b�! terms for$} A $vx. (a)IV4� (b) IF4�

An interesting case is observed when the lower edge
of the resonance coincides with the synchrotron sideband
+$} A $vr, [7]. The second attractor forms away from the
center nearly� out of phase with the main initial body and
the system damps much more slowly than when$} @ $vr.
De¿ning !	

n
/ dufwdq ^+n$vx 	 $}, @�U`, the line of

maximal growth is now approximately
��!�

4

�� ahead of the

main body (¿gure 2). Test particles now trying to escape
from the front have a more dif¿cult time than for the case
$} @ $vr for two reasons:

� as �! of the particles increase, the particles move
closer to the line of maximal growth, grow radially
and slow down�

� they need to precess�! @ 5
��!�

4

�� before their radial
growth is less than that of the macroparticle.

Longer escape times mean longer damping times of the
relaxation oscillation for$} A $vr.
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Figure 3: Attractor location for$} A $vx. Initial main
body at+3> =7,. Second attractor around+�=4>�=39,

In this case the second attractor starts at! q �@5.
��!�

4

��
and increases in phase towards� as it gains particles and
grows in amplitude (¿gure 3).
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